水质多参数在线监测仪

操作说明书

前 言

请在使用本仪器前仔细阅读本说明书。

感谢您购买本仪器。本说明书记载了仪器的使用方法、现场安装要求及日 常维护要求等。请在操作前仔细阅读本说明书,正确使用本产品。请将本说明书 与仪器共同放置,以备今后参考。

重要事项

- 如果用户或使用场所发生改变,请将本说明书转交给后续用户。
- 如果本说明书发生丢失或损坏,请立即与经销商联系。
- 为确保仪器运行状态,请确保仪器放置及安装条件符合本说明书要求。

声明

- 本说明书内容如有改动恕不另行通知。
- 本说明书内容力求准确,如有错误或遗漏敬请谅解。

注意事项

尊敬的用户,请在使用仪器时,注意以下几个要点,以保证仪器的使用寿 命和准确度。

- 小心轻放,避免在使用中碰撞,掉落仪器。
- 避免在使用中机身接触到水或其他液体。
- 不要将仪器长时间放置在阳光下,使用过后,应装好放在阴凉干燥通风的地方。
- 长时间不使用仪器,要将电源拔除,以免发生意外。
- 本仪器不适合使用于恶劣的环境下,高温低温或有强烈磁场干扰的地方,都
 有可能导致仪表损坏。
- 仪器一旦出现问题,请与经销商或本公司联系,不要自行拆卸仪器,如有拆 卸,本公司不再负责保修。

目录	
第一章 安全预防措施特别声明	1
1.1. 总则	1
1.2. 安全预防	1
第二章 技术参数	1
2.1. 监测因子	1
2.1.1. 常规五参数	1
2.1.2. 可选参数	1
2.1.3. 其他参数	1
2.2. 量程范围	1
2.3. 性能指标	2
2.4. 显示屏	2
2.5. 输出	2
2.6. 供电电源	2
2.7. 工作环境	2
第三章 设备接线 (定制产品另附接线说明)	3
3.1. 主界面	4
3.2. 参数设置	4
3.2.1. COD 校准	7
3.2.2. NH3-N 校准	8
3.2.3. 蓝绿藻校准	9
3.2.4. DO 校准	
3.2.5. 电导率校准:	
3.2.6. pH 校准	
3.2.7. 电流校准	12
3.2.8. 输入信号	13
3.2.9. 密码设置	13
3.2.10. 出厂恢复	13
3.2.11. 通讯设置	14
3.2.12. 报警设置	14
3.3. 历史记录	15
3.3.1. 数据查询	15

第一章 安全预防措施特别声明

1.1. 总则

请在开机运行前认真阅读本手册,并严格按照本手册说明进行操作,尤其注意所有有关危 险和谨慎问题的说明,请不要擅自维修、拆装仪器上任意组件,否则可能会导致对操作人员的 严重伤害和对仪器的严重损伤。对于自行拆卸的仪器,公司将不再提供免费售后服务。

1.2. 安全预防

- 维护或修理前务必断开电源;
- 按照地方或国家规则进行电力连接;
- 尽可能使用接地故障断路器;
- 在连接操作条件下将操作单元接地。

第二章 技术参数

2.1. 监测因子

2.1.1. 常规五参数

pH、溶解氧、电导率、浊度、温度;

2.1.2. 可选参数

ORP、COD、氨氮、氯化物、氟化物、叶绿素、蓝绿藻等;

2.1.3. 其他参数

可集成水位、流速、流量等参数,可定制接收其他仪器数据。

2.2. 量程范围

测量参数	测量范围	测量原理
pH	0~14	玻璃电极法
氨氮	0~1000mg/L	离子选择电极
溶解氧	0~20 mg/L	荧光法
电导率	0~200,000 μS/cm	电极法
浊度	0~20NTU~400NTU	红外散射法
温度	0~55 ℃	PT1000

COD	0-400mg/L	电极法
蓝绿藻	0-300000Cells/ms	电极法

2.3. 性能指标

测量参数	重复性误差	分辨率	响应时间
pН		0.01pH	
溶解氧		0.01mg/L	
电导率		0.1µs/cm	
浊度		0.01NTU	
温度		0.1°C	
COD		0.01mg/L	
蓝绿藻		0.01Cells/ms	

2.4. 显示屏

7"TFT 触摸屏, LED 背光, 800X480 分辨率, 154X86mm 显示窗口。

2.5. 输出

- (1) 6 路隔离式 4~20mA 电流输出(选配)
- (2) 1 路 RS485 数字量输出,支持 Modbus RTU 协议(选配)

2.6. 供电电源

- (1) 220VAC
- (2) 功率≤10w(不含继电器输出)

2.7. 工作环境

- (1) 环境温度: -10~60°C;
- (2) 相对湿度:不大于 90%;
- (3) 避免强腐蚀性气体; 避免晃动、摔击;
- (4) 室外安装避免阳光长时间直射仪表;
- (5) 传感器需固定牢固,避免长时间大水流冲击传感器
- (6) 除地球磁场外周围无强磁场干扰。

RLY1	继电器1
СОМ	公共端
RLY2	继电器 2
Pom L	220V 火线
Pom N	220V 零线
PE	电源地

m	A5/485
MA5+	电流 5+
MA5-	电流 5-
А	485+ A
В	485- B
m	43/mA4
MA3+	电流 3+
MA3-	电流 3-
MA4+	电流 4+
MA4-	电流 4-
m	41/mA2
MA1+	电流 1+
MA1-	电流 1-
MA2+	电流 2+
MA2-	电流 2-
多耳	力能接口
V+	电极 V+
V-	电极 V-
А	电极 485+ A
В	电极 485- B

	浊度
V+	电极 V+
V-	电极 V-
А	电极 485+ A
В	电极 485- B
	溶解氧
V+	电极 V+
V-	电极 V-
А	电极 485+ A
В	电极 485- B
	电导率
V+	电极 V+
V-	电极 V-
А	电极 485+ A
В	电极 485- B
	РН
V+	电极 V+
V-	电极 V-
A	电极 485+ A
В	电极 485- B

仪器操作

3.1. 主界面

首页	化学需氧量 cop 🔥	氦氦 NH3-N	
参数设置	0.00	0.00	
校准设置	电流: 0.00mA mg/L	电液: 0.00mA mg/L	
维护设置	蓝绿藻 🗘	酸碱度 PH <u>▲</u>	
历史记录	U _{电流:0.00m} A cells/ml	U.UU _{电液:0.00mA} pH	
售后服务	温度 Temp 🔥		
2020-05-25 16:39:03	0.0 _{电渍: 0.00m} A ℃		

 触控屏开机首页,显示项参数,分别是化学需氧量 (COD),氨氮(NH3-N),蓝绿藻,酸碱度(pH), 温度(Temp)。可通过左侧按钮,进入不同的设置菜 单。

明户登录		
① 负责人	用户密码:	
🚦 操作员	注納方式: ● 超过型录时长 ○ 超过型用时长 型录时长: ○	
	属于管理员组,可以管理权限分配 1858登录 登录 取清	

输入正确的密码进入对应的调试校准画面,初始密码为1

3.2. 参数设置

COD参数		返回	
COD	COD修正		
NH3-N	COD修正	0.00	
蓝绿藻	刮剧时间	0.00	
рН	油度补偿	0	
Temp		手动刮刷	
Current			

3. 首页按"参数设置"后输入正确密码进入 COD 校准 页面

COD 修正是对 COD 数值增加或减小,

COD 补偿是对 COD 进行现场校准后的线性值,默认为 1。

刮刷时间是设置 COD 刮刷时间; 浊度补偿是对 COD 的补偿

NH3-N参数	返回
COD	ALLA VIT
NH3-N	
蓝绿藻	<u> </u>
рН	氨氮补偿 0.00
Temp	
Current	

4. 进入 NH3-N 参数设置画面: ➡> NH3-N 修正是对 NH3-N 数值增加或减小, NH3-N 补偿是对 NH3-N 进行现场校准后的线性值,默 认为1。

5. 进入蓝绿藻参数设置画面: 蓝绿藻修正是对蓝绿藻数值增加或减小, 蓝绿藻补偿是对蓝绿藻进行现场校准后的线性值,默 认为1。

Temp参数

Current

- 6. 进入 pH 参数设置页面 pH 修正是对 pH 数值增加或减小, pH 补偿是对 pH 进行现场校准后的线性值, 默认为 1。
- 返回 温度修正是对温度数值增加或减小, 温度修正 Г 温度补偿 1. 温度类型
 - 7. 进入 Temp 参数设置画面:

- 温度补偿是对温度进行现场校准后的线性值,默认为
 - 温度类型: 1: PT1000 2: NTC2252 3: 手动

rrent参数					返回
COD		电流1	J.	电流2	\mathbf{V}
NH3-N	类型	4-20mA ×	类型	4-20mA ×	
蓝绿藻	通道	COD	通道	须氮	
рН	E RE	0.00	E REI	0.00	
Temp	TWK	0.00	TW	0.00	
Current	下限	0.00	下限	0.00	K.,

Current参数	返回
COD	电流3 电流4
NH3-N	类型 <u>4-20mA · 类型 4-20mA · </u>
蓝绿藻	通道 监绿藻 > 通道 pH >
рН	上限 0.00 上限 0.00
Тетр	下限 0.00 下限 0.00
Current	

8. 进入电流设置画面:

电流类型: 1:4-20mA 2:20-4mA

电流通道: COD, 氨氮 NH3-N, 蓝绿藻, 酸碱度 pH, 温度 TEMP 六选一

电流上限: 20mA 输出对应通道最高值

电流下限: 4mA 输出对应通道最低值

Current参数			返回
COD	电流5	电流6	
NH3-N	类型 4-20mA ×	类型 <u>4-20mA ×</u>	
蓝绿藻	通道 Temp 🗸	通道 COD Y	
рН	上限 0.00	上限 0.00	
Temp	下限 0.00	下限 0.00	
Current		4	

校准设置

3.2.1. COD 校准

1. 首页按校准后输入正确密码进入 COD 校准页面 cod 测量范围 0-400mg/L,为了提高测量进度,我们共 5 点标定,如 0、1、10、100、400mg/L; 出厂默认选择 5 种标准溶液进行标定, 标液 0: 校准第一点 标定后对应第一电压, 标液 1.0: 校准第二点 标定后对应第二电压,
标液 10.0: 校准第三点 标定后对应第三电压,
标液 100.0: 校准第三点 标定后对应第三电压,
标液 400.0: 校准第五点, 标液 400.0: 校准第五点,

校准顺序从浓度低的到浓度高的标定, 校准步骤:

第一步:用纯水清洗 cod 电极;

第二步:将 cod 电极放入准备好的标准溶液中;

第三步: 在校准值中输入标准溶液浓度值, 点击校准 查询按钮。

第四步:待实测电压稳定后,将实测电压值输入对应的校准电压栏中,即完成该标准溶液的校准。

> 2. 校准查询: 便于校准前确认

3.2.2. NH3-N 校准

NH3-N校准				返回	
COD	校准项目	校准值	校准电压		
NH3-N	校准一	0.00	0.0		
# (4.3)	校准二	0.00	0.0		
监球深	校准三	0.00	0.0		
рН	校准五	0.00	0.0	la serie	
Current	現场校准		校准查询		
NH3-N校准				返回	
COD	· · · · · · · · · · · · · · · · · · ·				
NH3-N	实	·测值: 0.00)		
蓝绿藻	实测	电压: 0.00)		
рН			1	/	
Current			取消		
No.	1	14			

1. 进入 NH3-N 校准画面:

NH3-N 测量范围 0-1000mg/L,为了提高测量进度,我 们共 5 点标定,如 0、1、10、100、1000mg/L, 出厂默认选择 5 种标准溶液进行标定, 标液 0: 校准第一点 标定后对应第一电压, 标液 1.0: 校准第二点 标定后对应第二电压, 标液 10: 校准第三点

- 标定后对应第三电压,
- 标液 100.0:校准第四点 标定后对应第四电压,

标液 1000.0: 校准第五点, 标定后对应第五电压,

校准顺序从浓度低的到浓度高的标定,

校准步骤:

- 第一步:用纯水清洗 NH3-N 电极;
- 第二步:将 NH3-N 电极放入准备好的标准溶液中;

第三步: 在校准值中输入标准溶液浓度值, 点击校准 查询按钮。

第四步:待实测电压稳定后,将实测电压值输入对应 的校准电压栏中,即完成该标准溶液的校准。

3.2.3. 蓝绿藻校准

蓝绿藻校准				返回	
COD	校准项目	校准值	校准电压	<u>ן אין אר</u>	
NH3-N	校准一	0.00	0.00		
#41.99	校准二	0	0		
监纵深	校准三	0	0		
рН	校准五			1	
Current	现场校准	0.00	校准查询		
蓝绿藻校准				返回	
COD					
NH3-N	实	:测值: 0.0			
蓝绿藻	实测	电压: 0.0			
рН			取消		
Current					
		- M			

1.	进入蓝绿藻校准画面:

蓝绿藻测量范围 300000Cells/ms,为了提高测量进度,我们共 5 点标定,如 0、300、3000、300000Cells/ms 出厂默认选择 4 种标准溶液进行标定,

标液 0: 校准第一点

标定后对应第一电压,

标液 300: 校准第二点

标定后对应第二电压,

✓ 标液 30000: 校准第三点 标定后对应第三电压, 标液 300000: 校准第四点

标定后对应第四电压,

校准顺序从浓度低的到浓度高的标定,

校准步骤:

第一步:用纯水清洗蓝绿藻电极;

第二步:将蓝绿藻电极放入准备好的标准溶液中;

第三步: 在校准值中输入标准溶液浓度值, 点击校准 查询按钮。

第四步:待实测电压稳定后,将实测电压值输入对应的校准电压栏中,即完成该标准溶液的校准。

2. 现场校准:如果现场值和我们测量值有偏差,可通 过此项校准,提高测量准确性

蓝绿藻校准 COD		. /	返回
NH3-N	实测值:	0. 0	
蓝绿藻	实测电压:	0. 0	
рН		取消	1
Current			

□ 3. 校准查询: 便于校准前确认

3.2.4. DO 校准

3.2.5. 电导率校准:

 将电导率电极放入电导率标液中,点击校准 查询将结果输入对应标准溶液值进行校准,校准点从 低到高依次校准,最多可以校准5个点,标准液配置 方式参考"试剂"配置说明。

Turb 校准

校准设置	返回	
рН		
NH3-N		
Cond	实测值: 0.00	
DO	实测电压: 0.00	
Turb	Ity stf	
Current		

1. 电导率现场校准:将对比仪器所得值输入"现 场值"中进行校准。

1. 进入 Turb 校准画面,

Turb 测量范围 0-1000NTU,为了提高测量进度,我们 共 5 点标定,如 0、1、10、100、1000NTU, 出厂默认选择 2 种标准溶液进行标定, 标液 0: 校准第一点

标定后对应第一电压,

标液 1.0: 校准第二点

标定后对应第二电压,

标液 10.0: 校准第三点

标定后对应第三电压,

标液 100.0: 校准第四点

标定后对应第四电压,

标液 1000.0: 校准第五点,

标定后对应第五电压,

校准顺序从浓度低的到浓度高的标定,

校准步骤:

第一步:用纯水清洗 Turb 电极;

第二步:将 Turb 电极放入准备好的标准溶液中;

第三步: 在校准值中输入标准溶液浓度值, 点击校准 查询按钮。

第四步:待实测电压稳定后,将实测电压值输入对应的校准电压栏中,即完成该标准溶液的校准。

2. 现场校准:如果现场值和我们测量值有偏差,可通 过此项校准,提高测量准确性

3. 校准查询: 便于校准前确认

3.2.6. pH 校准 pH校准 返回 校准项目 校准结果 4.00pH 零位一 零位 1. 首页按校准后输入正确密码进入 pH 校准页面 0.00 0.00 6. 86рН 校准项目分为3点pH标定和现场标定 斜率 斜率: 9. 18pH 0.00 0.00 Current 0.00 pH校准 返回 2. 准备好第一种标液, 4.00pH 将PH电极洗净后放于4.00标液中, 待电压稳定后,点击确认。 用纯水清洗电极后,放入 4.00pH 标液中,等电压稳定 电压: 0.00 后按确认键。 Current pH校准 返回 2. 准备好纯水,用纯水清洗电极后,将电极放入纯水 中,等电压稳定后按确认键,正常数值会在 0.5V 左右, 将PH电极洗净后放于6.86标液中, 待电压稳定后,点击确认。 NH3-N 确认后校准结果显示于右侧 Г 3. 用纯水清洗电极后,放入 6.86pH 标液中,等电压稳 电压: 0.00 定后按确认键。 Current 4. 准备好第三种标液, 9.18pH pH校准 返回 用纯水清洗电极后,放入 9.18pH 标液中,等电压稳定 将PH电极洗净后放于9.18标液中, 待电压稳定后,点击确认。 后按确认键,确认后校准结果显示于右侧 NH3-N Г 电压: 0.00 Current pH校准 返回 5. 现场校准: 如果现场值和我们测量值有偏差, 可通 将PH电极洗净后放于现场溶液中, 待测量值稳定后,输入现场值,点 击确认。 NH3-N 过此项校准,提高测量准确性 Г 测量值: 0.00 现场值: Current

urrent校准				返回
COD	校准项目	4mA校准结果	20mA校准结果	
NH3-N	电流1 由流2	0.00	0.00	
藍绿藻	电流3	0.00	0.00	
рН	电流4	0.00	0.00	
Current	电流5 电流6	0.00	0.00	
		11		

1. 进入电流校准界面
 →通过调整输入框中信号值,调整输出电流的实际值

维护菜单

3.2.8. 输入信号

1.维护界面点击输入信号,可以看到所有测量参数 相关的数据,便于维护查错

3.2.9. 密码设置

维护设置 输入信号 密码设置 电厂恢复	返回 用户管理	
山) 医夏 通讯设置 报警设置	更改蓄料	

1.首页按维护后输入正确密码进入维护页面 新密码:便于用户自行管理

3.2.10. 出厂恢复

1.维护界面点击恢复,可以单独恢复也可以全部恢复, 会提示确认。

3.2.11. 通讯设置

Г

3.2.12. 报警设置

1.用于设置设备的各个继电器的报警通道、报警方式、 报警时间等。

报警设置					返回	
输入信号		Turb	FCL	Cond	DO	
密码设置	高限报警	0.00	0. 000	0.00	0.00	
出厂恢复	高报迟滞	0.00	0. 000	0.00	0.00	
通讯设置	低限报警	0.00	0. 000	0.00	0. 00	
报警设置	低报迟滞	0.00	0.000	0.00	0. 00	
			P	•		

报警设置					返回
输入信号		pH	Temp	ORP	NH3-N
密码设置	高限报警	0. 00	0. 000	0.00	0.00
出厂恢复	高报迟滞	0.00	0.000	0.00	0.00
通讯设置	低限报警	0. 00	0. 000	0.00	0.00
报警设置	低报迟滞	0.00	0. 000	0. 00	0. 00
			P		

2.用于设置各个参数的高报警限、高报警迟滞、低报警限、低报警迟滞对应的值。

高限报警: 当测量值大于报警限之后, 即开始报警。

高报迟滞:当开始报警之后,测量值只要大于高限报 警鉴于高报迟滞,设备保持报警状态。

低限报警: 当测量值小于低报警限之后,即开始报警。 高报迟滞: 当开始报警之后,测量值只要小于低限报 警加上低报迟滞,设备保持报警状态

3.3. 历史记录

3.3.1. 数据查询

仪表用户通讯协议:

(1) 协议概述:

通讯协议采用 MODBUS(RTU) 协议,通讯内容及地址可依据客户需要更改。

默认配置为网络地址 01, 波特率 9600, 偶校验, 一位停止位, 用户可以自行设置更改;

功能码 0x04: 此项功能使主机能够获取从机的实时测量数值, 该数值规定为单精度浮点型(即占据连续 2个寄存器地址),并以不同的寄存器地址标示相应的参数。

通讯地址如下: (PLC读取地址需要加 30001)

30001-30002:溶氧值 30003-30004:PH值 30005-30006:电导率值 30007-30008:温度值 30009-30010:浊度值

(2) 通讯举例:

功能码 04 指令举例:

通讯地址=1, 溶氧值=20.0, pH值=10.0, 电导率值=100.0, 浊度值=7.0, 温度值=25.0

主机发送:01 04 00 00 00 0A 70 0D

从机应答:01 04 14 00 00 41 A0 00 00 41 20 00 00 42 C8 00 00 40 E0 00 00 41 C8 BD A1

注释:【01】代表仪表通讯地址;

【04】代表功能码 04;
【14】代表有 14H (20) 个字节数据;
【00 00 41 A0] =20.0; // 溶氧值
【00 00 41 20] =10.0; // pH值
【00 00 42 C8] =100.0; // 电导率值
【00 00 40 E0] =7.0; // 温度值
【00 00 41 C8] =25.0; // 浊度值
【BD A1】代表 CRC16 校验码;